
N88£16427

The Resource Envelope as a Basis for

Space Station Management System Scheduling

by

Joy Bush and Anna Critchfield

Computer Sciences Corporation, System Sciences Division

4600 Powder Mill Road

Beltville, Maryland 20705

Abstract

This paper describes the Platform Management System (PMS)

Resource Envelope Scheduling System (PRESS) expert system prototype

developed for space station scheduling. The purpose of developing

the prototype was to investigate the resource envelope concept in a

pratical scheduling application, using a commercially available

expert system shell. PRESS is being developed on an IBM PC/AT using

Teknowledge, Inc.'s M.I expert system shell.

The research includes a proposed definition of the content of

the resource envelope, and examination of the resource envelope's

flexibility and limitations for scheduling. Our definition of the

resource envelope includes time parameters, resource usage, and

constraint considerations. The suggested format is exercised by the

PRESS scheduler, which performs both initial planning and

replanning, fulfilling two of the functions currently defined for

the PMS: short-term planning and constraint conflict resolution.

, Introduction

PRESS is a prototype expert system developed as part of an

effort to study the feasibility of using expert system technology in

the Space Station environment. PRESS implements some of the

functions that have been defined for the PMS, and uses the not yet

fully defined "resource envelope" concept that has been developed

for Space Station applications.

In a previous article [I], presented following completion of

the rapid prototype, the authors described in detail the PRESS

system functionality for the rapid prototype, and planned full

prototype capabilities. Since then, the full system prototype, with

finalized functionality and key concept refinement, has been

developed and demonstrated for NASA representatives. In the present

article the existing PRESS capabilities will be briefly described

for familiarization purposes, but the main emphasis will be placed

on those assumptions, concepts, and technical approaches which were

developed and/or finalized after the PRESS rapid prototype

demonstration and the previous publication.

I£, Discussion

The goals of PRESS are: to research the feasibility of expert

system applications in providing PMS functionality; to use (and

377



therefore help define) the resource envelope concept as a basis for

automatic scheduling; to use realistic examples like the Cosmic

Background Explorer (COBE) and the Upper Atmosphere Research

Satellite (UARS) spacecraft scheduling needs as a proof-of-concept;

and to evaluate the suitability of the system development

environment for expansion of this prototype or developement of an

operational system.

The PMS [2] is a software system that provides operational

management services among payloads and platform systems for the

space station. PMS consists of an automated on-board segment, the

Platform Management Application (PMA), and a ground segment, the

Platform Management Ground Application (PMGA) .

PRESS addresses two of the PMS functions. The first of these

is the Short-Term Plan Management function. This function involves

the PMGA receiving a plan from the Platform Support Center, and

uplinking appropriate portions to the PMA. The PMGA and the PMA may

receive plan changes requested by operators, customers, subsystems,

and payloads. The second function, Conflict Recognition and

Resolution, involves the monitoring of resource usage, allocation,

and margins. Conflicts for resource usage are to be resolved on a

priority basis. This function will be used in deciding whether a

given request may be scheduled. The PMA and the PMGA are required

to modify the short-term schedule while maintaining a conflict-free

plan that does not exceed the platform's resource capabilities or

compromise its safety.

A final PRESS prototype system was completed and demonstrated

for NASA on September 3, 1987. Some functions which were implemented

in the rapid prototype were removed from the full prototype due to

memory limitations. Both PRESS prototypes taken together serve as a

proof-of-concept for all the defined functions. The following
functions are implemented by PRESS.

• Perform initial scheduling, processing requests by priority

• Perform rescheduling

• Accept schedule modification requests as resource envelopes

• Accept schedule modification requests as changes to

resource availability and/or constraints

• Resolve schedule conflicts based on assigned envelope

priorities

• Perform conflict checking

• Accept multiple envelope requests

• Place scope of user interaction at operator's discretion

- provide advice for modifications to the resource

envelope requests that would permit successful

scheduling (rapid prototype version only)

- provide capability for operator to cease processing

before completion of input file

• Perform input error checking

- on user input data file via preprocessor

- on legality of interactive query responses via

M.I capabilities

• Provide graphic and textual representation of system output

378



Brief definitions of some terms are presented here to avoid

confusion with possible active usage elsewhere. An "activity" is

the item being scheduled. It may be anything from a complex

scientific experiment to a single use of a communications link. An

activity may consist of more than one event, with each event

represented as one "resource envelope". A request for scheduling an
activity is represented to PRESS in the form of one or more resource

envelopes, together with an activity header. Each "resource

envelope" is equivalent to an event and represents a time period,

one or more resources whose use is required, and a usage level for

each resource. Resource usage is assumed to be stable for

scheduling purposes. Examples of "resources" are power, an

instrument, a communications link, etc. The "schedule" or "schedule

timeline" is produced by the system to show what activities have

been scheduled within a given time period. PRESS output shows the

activities plotted against the resource used over time, so that the

schedule timeline is actually a set of parallel timelines, one for

each resource, with usage periods identified with an envelope

identifier. PRESS accepts user input interactively or from a

stored file, and is capable of both initial and rescheduling

functions, including rescheduling as required by changes in resource

availability or operational constraints. Requests are scheduled

based on externally determined priorities. Higher-priority requests

receive preferential treatment during scheduling. This includes the

automatic deletion of already scheduled lower-priority requests if

needed to successfully schedule a new higher-priority request. (See

detailed description of PRESS functionality [3]).

The presumption at the outset was that the resource envelope

concept would permit a global view of resource usage, which is

important for shared resources like power or communication links. A

global view provides protection against oversubscription, especially
in concurrently used resources.

PRESS implementation of the the resource envelope concept

included the following major points: (a) the activity is viewed in

terms of resource consumption; (b) within a resource envelope,

resource usage is considered constant, for scheduling purposes, over

the time period of the envelope; (c) activities which vary in

resources used, or dramatically in level of resource usage, must be

broken into separate events, with each event represented by a

resource envelope; (d) envelopes in one activity may not overlap in

time, and events within an activity are defined by the user in

chronological order; and (e) activities may overlap in time, and use

the same resources, availability permitting.

PRESS is implemented as a production rule system in M.I by

Teknowledge. The knowledge base contains approximately 300

entries; about 145 of them are rules. PRESS represents resources

and constraints as lists, but treats them as virtual objects. The

representation includes: resource identifier; start and stop times;

amount of resource; and an event identifier (or nil) field.

Constraints are represented in a similar manner to the resources.

The resource and constraint objects are dynamically created,

379



deleted, divided or combined by PRESS during the process of

scheduling. Resource and constraint identifiers are not

"hard-coded" and are transparent to PRESS. Resource levels can be

represented as absolute units or as percentages of use, as long as

the convention is maintained consistently within one resource.

These two characteristics afford a maximum flexibility; the intent

was to make PRESS as generic a scheduler as possible, easily applied

to a number of specific applications. Requests for scheduling

include an activity header and one or more request envelopes. The

activity header specifies the priority and type of the request.

The request envelope is implemented as a list, containing the

following fields: activity identifier; envelope identifier; start

time and duration windows; resources and amount required; and

constraints generated and avoided.

The initial test application of PRESS was to schedule COBE

communication link usage. The communication links themselves were

considered as the resources (uplinks, downlinks, and links via TDRSS

or ground links were treated as separate resources). Line-of-sight

times determined resource availability. The COBE example had no

constraints. PRESS could easily perform scheduling in this case,

but the example was too limited to exercise all of PRESS's

capabilities.

The UARS observation instrument scheduling was selected as a

more complex problem. UARS contains a platform with three separate

instruments capable of performing solar or stellar observations.

Although the instruments make independent observations, the attitude

of the platform, which all share, determines what object may be

observed at any one time. Resources included power, the instruments

and the platform. Initially, in a manner analogous to the COBE

approach, the sun and stars were also treated as resources to be

"used" by being observed. However, it was found that the presence

of the sun, for example, constrained stellar observation. This

meant that even if the sun was viewed as a resource, it must be

considered as a constraint as well. Alternatively, if solar

availability was treated as a constraint solely, it became necessary

to specifiy both the sun's presence and absence as constraint

objects, since solar observations could only occur in the presence

of the sun, and certain stellar observatons only in the absence of

the sun. It was felt to be more consistent to represent solar

availability as a constraint than to have it appear as both a

constraint and a resource. Even so, it was difficult to create a

test scenario to accurately reflect a realistic activity in UARS

terms. Such an activity might include slewing the platform to

obtain a sighting, opening instrument shutters, placing certain

filters, and taking the observation. It was difficult to define

this with resources limited to power, the platform, and the

individual instruments, at least not in any obvious one-to-one

correspondence with the actions taking place. And although PRESS

can express concurrent use of resources, it cannot express truly

shared use. An example is the need to say that if a scheduled

activity already has the platform slewing toward the sun, a second

activity requiring the same action need not use resources to do it,

but rather can "share" the existing action.

38O



I_I. Conclusions

PRESS is a prototype system, with certain conditions and

simplifications assumed. However, conclusions, and problems the

authors have encountered during system development may be applied to

operational systems which use the resource envelope concept in a

similar technical environment.

The authors feel that the resource envelope as a theoretical

concept is very useful; it provides a global view and permits tight

control over concurrent usage of shared resources. However,

resource envelopes do not seem to be straightforward in practical

application because of the need for additional definition and

assumptions, such as determining what should be considered a
resource and what should be considered a constraint. Another

difficult decision involves breaking down an activity into

envelopes, which must take into consideration "wastage" of resources

due to the assumption of a constant level of use against the

complexity of defining and processing the request.

From this perspective, the resource envelope concept may be

needed in an environment similar to space station environment. It

is not as easily used as the exclusive scheduling approach for

individual payload activities. The optimal balance between the

resource envelope approach and a more traditional commanding

scheduling approach in a multi-payload application awaits further

investigation.

Acknowledgements

The authors wish to acknowledge Ed Beach, Karen Leavitt, Gail Maury,

and Audrey Loomis (CSC), Steve Tompkins, Steve Wadding, and Larry

Zeigenfuss (GSFC code 511), and Brian Keeler (Bendix Field

Engineering Corporation), for their encouragement and helpful

discussions. This work was funded by the National Aeronautics and

Space Administration, Goddard Space Flight Center for the Mission

Operations Division (GSFC code 510) and the Data Systems Technology

Division (GSFC code 520) under Contract NAS5-28620, task assignment
319.

i. Bush, J.L., A. Critchfield, and A. Loomis, "Space Station

Platform Management System (PMS) Replanning Using Resource

Envelopes", May, 1987.

2. Goddard Space Flight Center (GSFC),"The Platform Management

System Definition Document", October, 1986.

3. Computer Sciences Corporation (CSC), "Space Station Platform

Management System (PMS) Resource Envelope Scheduling System

(PRESS): Prototype Expert Scheduling System for the

Multisatellite Operation Control Center (MSOCC)", September,
1987.

381




